Robust ferromagnetism in monolayer chromium nitride

نویسندگان

  • Shunhong Zhang
  • Yawei Li
  • Tianshan Zhao
  • Qian Wang
چکیده

Design and synthesis of two-dimensional (2D) materials with robust ferromagnetism and biocompatibility is highly desirable due to their potential applications in spintronics and biodevices. However, the hotly pursued 2D sheets including pristine graphene, monolayer BN, and layered transition metal dichalcogenides are nonmagnetic or weakly magnetic. Using biomimetic particle swarm optimization (PSO) technique combined with ab initio calculations we predict the existence of a 2D structure, a monolayer of rocksalt-structured CrN (100) surface, which is both ferromagnetic and biocompatible. Its dynamic, thermal and magnetic stabilities are confirmed by carrying out a variety of state-of-the-art theoretical calculations. Analyses of its band structure and density of states reveal that this material is half-metallic, and the origin of the ferromagnetism is due to p-d exchange interaction between the Cr and N atoms. We demonstrate that the displayed ferromagnetism is robust against thermal and mechanical perturbations. The corresponding Curie temperature is about 675 K which is higher than that of most previously studied 2D monolayers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Ferromagnetism of Chromium Nanoparticles Formed in Superfluid Helium.

Chromium nanoparticles are formed using superfluid helium droplets as the nanoreactors, which are strongly ferromagnetic. The transition from antiferromagentism to ferromagnetism is attributed to atomic-scale disorder in chromium nanoparticles, leading to abundant unbalanced surface spins. Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferroma...

متن کامل

Atomically Thin B doped g-C3N4 Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity

Since the graphitic carbon nitride (g-C4N3), which can be seen as C-doped graphitic-C3N4 (g-C3N4), was reported to display ferromagnetic ground state and intrinsic half-metallicity (Du et al., PRL,108,197207,2012), it has attracted numerous research interest to tune the electronic structure and magnetic properties of g-C3N4 due to their potential applications in spintronic devices. In this pape...

متن کامل

Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

متن کامل

Magnetic and Electronic Evolutions of Hydrogenated VTe2 Monolayer under Tension

Two-dimensional nanostructures with controllable magnetic and electronic properties are desirable for their versatile applications in quantum devices. Here, we present a first-principles design on their magnetic and electronic switching controlled by tension. We find that hydrogenated VTe2 monolayer experiences a transfer from anti-ferromagnetism to ferromagnetism via a turning-point of paramag...

متن کامل

Hexavalent chromium removal from a simulated wastewater using Fe(II) modified bentonite

Background and Objective: Hexavalent chromium is reported to be highly toxic, mutagenic and carcinogenic; hence treatment of water and wastewater contaminated with this element by low-cost and environmentally friendly methods is of great importance. Therefore the aim of present study was to evaluate the efficiency of Fe(II) modified bentonite for hexavalent chromium removal from a simulated was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014